3.3.53 \(\int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx\) [253]

3.3.53.1 Optimal result
3.3.53.2 Mathematica [F]
3.3.53.3 Rubi [A] (verified)
3.3.53.4 Maple [C] (warning: unable to verify)
3.3.53.5 Fricas [F(-1)]
3.3.53.6 Sympy [F(-1)]
3.3.53.7 Maxima [F(-1)]
3.3.53.8 Giac [F]
3.3.53.9 Mupad [F(-1)]

3.3.53.1 Optimal result

Integrand size = 25, antiderivative size = 321 \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \]

output
2*cot(d*x+c)^3/a^2/d/(e*cot(d*x+c))^(7/2)+2*cot(d*x+c)^3*csc(d*x+c)*(sin(c 
+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d*x)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2 
))*sin(2*d*x+2*c)^(1/2)/a^2/d/(e*cot(d*x+c))^(7/2)+1/2*arctan(-1+2^(1/2)*t 
an(d*x+c)^(1/2))/a^2/d/(e*cot(d*x+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)+1/2*a 
rctan(1+2^(1/2)*tan(d*x+c)^(1/2))/a^2/d/(e*cot(d*x+c))^(7/2)*2^(1/2)/tan(d 
*x+c)^(7/2)-1/4*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/a^2/d/(e*cot(d*x 
+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)+1/4*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan( 
d*x+c))/a^2/d/(e*cot(d*x+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)
 
3.3.53.2 Mathematica [F]

\[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx \]

input
Integrate[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]
 
output
Integrate[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2), x]
 
3.3.53.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.74, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4388, 3042, 4376, 3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sec (c+d x)+a)^2 (e \cot (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sec (c+d x)+a)^2 (e \cot (c+d x))^{7/2}}dx\)

\(\Big \downarrow \) 4388

\(\displaystyle \frac {\int \frac {\tan ^{\frac {7}{2}}(c+d x)}{(\sec (c+d x) a+a)^2}dx}{\tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (-\cot \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{\tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

\(\Big \downarrow \) 4376

\(\displaystyle \frac {\int \frac {(a-a \sec (c+d x))^2}{\sqrt {\tan (c+d x)}}dx}{a^4 \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (a-a \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\sqrt {-\cot \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^4 \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

\(\Big \downarrow \) 4374

\(\displaystyle \frac {\int \left (\frac {\sec ^2(c+d x) a^2}{\sqrt {\tan (c+d x)}}-\frac {2 \sec (c+d x) a^2}{\sqrt {\tan (c+d x)}}+\frac {a^2}{\sqrt {\tan (c+d x)}}\right )dx}{a^4 \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {a^2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {a^2 \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 a^2 \sqrt {\tan (c+d x)}}{d}-\frac {a^2 \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {a^2 \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {\tan (c+d x)}}}{a^4 \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}\)

input
Int[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]
 
output
(-((a^2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d)) + (a^2*ArcTan 
[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - (a^2*Log[1 - Sqrt[2]*Sqrt[ 
Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) + (a^2*Log[1 + Sqrt[2]*Sqrt[T 
an[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (2*a^2*EllipticF[c - Pi/4 + 
d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(d*Sqrt[Tan[c + d*x]]) + (2*a 
^2*Sqrt[Tan[c + d*x]])/d)/(a^4*(e*Cot[c + d*x])^(7/2)*Tan[c + d*x]^(7/2))
 

3.3.53.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 

rule 4376
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Simp[a^(2*n)/e^(2*n)   Int[(e*Cot[c + d*x])^(m + 2* 
n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a 
^2 - b^2, 0] && ILtQ[n, 0]
 

rule 4388
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*((a_) + (b_.)*sec[(c_.) + (d_.)*(x 
_)])^(n_.), x_Symbol] :> Simp[(e*Cot[c + d*x])^m*Tan[c + d*x]^m   Int[(a + 
b*Sec[c + d*x])^n/Tan[c + d*x]^m, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] 
 &&  !IntegerQ[m]
 
3.3.53.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.28 (sec) , antiderivative size = 961, normalized size of antiderivative = 2.99

method result size
default \(\text {Expression too large to display}\) \(961\)

input
int(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-1/2/a^2/d*2^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^4*(I*(csc(d*x+c)-cot( 
d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c) 
)^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))* 
((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d 
*x+c))^(1/2)-I*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c 
))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1 
)^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)* 
(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)-6*(csc(d*x+c)-cot(d*x+c)+1)^(1 
/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*Elli 
pticF((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(d 
*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)+(csc(d*x+c 
)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc( 
d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^( 
1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1) 
*csc(d*x+c))^(1/2)+(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d 
*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+ 
c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c) 
-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)+4*((1-cos(d*x+c))^3*csc(d* 
x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)*(-cot(d*x+c)+csc(d*x+c)))/(-e/(1-cos(d 
*x+c))*((1-cos(d*x+c))^2*csc(d*x+c)-sin(d*x+c)))^(7/2)/(1-cos(d*x+c))^3...
 
3.3.53.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
Timed out
 
3.3.53.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(1/(e*cot(d*x+c))**(7/2)/(a+a*sec(d*x+c))**2,x)
 
output
Timed out
 
3.3.53.7 Maxima [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
Timed out
 
3.3.53.8 Giac [F]

\[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int { \frac {1}{\left (e \cot \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate(1/((e*cot(d*x + c))^(7/2)*(a*sec(d*x + c) + a)^2), x)
 
3.3.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{7/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

input
int(1/((e*cot(c + d*x))^(7/2)*(a + a/cos(c + d*x))^2),x)
 
output
int(cos(c + d*x)^2/(a^2*(e*cot(c + d*x))^(7/2)*(cos(c + d*x) + 1)^2), x)